
iDus InGaAs 2.2 µm

Features and Benefits

- 0.8 to 2.2 µm

 Operating wavelength range
- Peak QE of > 70%
 High detector sensitivity
- TE cooling to -90°C ¹¹
 Negligible dark current without the inconvenience of LN₂
- UltraVac[™] •²
 Permanent vacuum integrity, critical for deep cooling and sensor performance
- Single window design
 Delivers maximum photon throughput
- 25 µm pixel width option Ideal for high-resolution NIR spectroscopy
- Simple USB 2.0 connection
 USB plug and play no controller box.
 Inputs & Outputs: External Trigger, Fire and Shutter TTL readily accessible. I²C for the more adventurous user
- Software selectable output amplifiers
 Allows user to optimize operation with
 choice of High Dynamic Range (HDR) or
 High Sensitivity (HS) modes of operation
- Minimum exposure time of 1.4 μs
 Enables higher time-resolution and
 minimization of dark current contribution
 for applications with reasonable signal level

Andor's iDus InGaAs detector array for Spectroscopy

Andor's iDus InGaAs 2.2 array detector series provides the most optimized platform for Spectroscopy applications up to 2.2 μ m. The TE-cooled, in-vacuum sensors reach cooling temperatures of -90°C where the best Signal-to-Noise ratio can be achieved. Indeed dark current will improve moderately below -90°C where scene black body radiation will dominate, while Quantum Efficiency of the sensor will be greatly impacted at these lower temperatures and lead to a lower Signal-to-Noise ratio.

Specifications Summary

Active pixels	512 or 1024
Pixel size (W x H)	25 x 250 or 50 x 250 μm
Pixel well depth (typical)	
High Dynamic Range mode High Sensitivity mode	170 Me ⁻ 5 Me ⁻
Maximum cooling *1	-90°C
Maximum spectra per sec	193
Read noise (typical)	580 e ⁻
Dark current (typical)	5 Me ⁻ /pixel/sec
Minimum exposure time	1.4 µs

Key Specifications •3

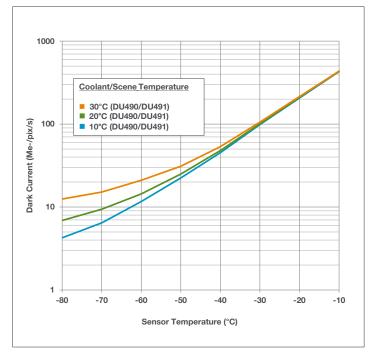
Model number	DU490A	DU491A	DU492A	
Sensor options	512 pixels, 25 µm pitch	1024 pixels, 25 µm pitch	512 pixels, 50 µm pitch	
Active pixels	512	1024	512	
Pixel size	25 x 250	25 x 250	50 x 250	
Cooler type	DU			
Wavelength range	800 nm - 2.2 μm			
Minimum exposure time *4	1.4 µs			
Minimum temperatures *5 Air cooled Coolant chiller, coolant @ 16°C Coolant chiller, coolant @ 10°C, 0.75 l/min	-70°C -85°C -90°C			
Max spectra per second (100 kHz readout)	193	97	193	
System window type	Single UV-grade fused silica window, uncoated			
Digitization	16 bit			

Advanced Specifications *3

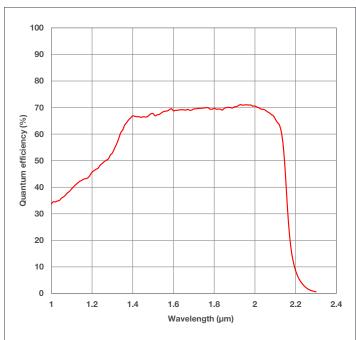
Dark current Me'/pixel/sec @ max cooling *6	5	5	12.2
Pixel well depth (Me ⁻) * ⁷ High Dynamic Range mode		170 5	
High Sensitivity mode Read noise (e ⁻) *6		J	
High Sensitivity mode High Dynamic Range mode		580 8150	
Sensitivity (e·/count) High Dynamic Range mode High Sensitivity mode		2800 90	
Blemishes *9	≤10	≤ 20	≤ 10
Linearity	Better than 99%		
Insertion delay from external trigger		2.95 μs ± 0.1 μs	

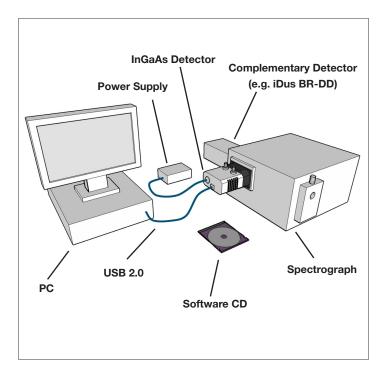
Have you found what you are looking for?

Need better QE between 1 and 1.7 μm? The iDus InGaAs 1.7 μm series offer better than 85% Quantum Efficiency.


Need to work below 1 μm ? The iDus 401, 416 & 420 series offer Deep Depletion NIR optimized sensors.

Need a customized version? Please contact us to discuss our Customer Special Request options.


The iDus InGaAs series combines seamlessly with Andor's research grade Shamrock Czerny-Turner spectrographs. These instruments are available on request with gold or silver coated optics for optimized NIR operations.


System Dark Current v Temperature ***

Quantum Efficiency Curve "

Typical Setup

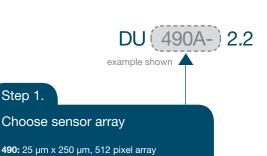
Creating The Optimum Product for You

How to customize the iDus InGaAs 2.2:

Step 1.

The iDus InGaAs 2.2 comes with 3 options for sensor types. Please select the sensor which best suits your needs.

Step 2.


Please select which software you require.

Step 3.

For compatibility, please indicate which accessories are required.

InGaAs mounted on a Shamrock 163 mm spectrograph, ideal combination for NIR Photoluminescence Spectroscopy.

Step 2.

491: 25 μm x 250 μm, 1024 pixel array

492: 50 μm x 250 μm, 512 pixel array

Step 1.

The iDus InGaAs requires at least one of the following software options:

Solis for Spectroscopy A 32-bit application compatible with 32 and 64-bit Windows (XP, Vista, 7 and 8) offering rich functionality for data acquisition and processing. AndorBasic provides macro language control of data acquisition, processing, display and export. Control of Andor Shamrock spectrographs and a very wide range of 3rd party spectrographs is also available, see list below.

Andor SDK A software development kit that allows you to control the Andor range of cameras from your own application. Available as 32 and 64-bit libraries for Windows (XP, Vista, 7 and 8) and Linux. Compatible with C/C++, C#, Delphi, VB6, VB.NET, LabVIEW and Matlab.

Step 3.

The following accessories are available:

XW-RECR Coolant re-circulator for enhanced cooling performance.

ACC-XW-CHIL-160 Oasis 160 Ultra Compact Chiller Unit (tubing to be ordered separately)

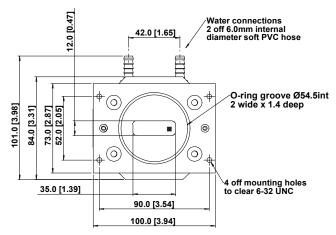
ACC-6MM-TUBING-2xxxxM 6 mm tubing option for ACC-XW-CHIL-160

SR-ASZ-0033 SR-750 Adapter Flange for InGaAs detector.

SR1-ASZ-8044 SR-163 Adapter Flange for InGaAs detector

ACC-SD-VDM1000 Shutter Driver for NS25B Bistable Shutter (not needed for Shamrock

ACC-SHT-NS25B Bistable Shutter, Standalone (not needed for Shamrock spectrographs)


Spectrograph Compatibility

The InGaAs series is fully compatible with Andor's Shamrock spectrograph (163 - 750 nm focal lengths) family. Shamrock spectrographs are supplied with Al/MgF, mirror coatings as standard, gold or silver optics are available on request. Spectrograph mounting flanges and software control are available for a wide variety of 3rd party spectrographs including, McPherson, JY/ Horiba, PI/Acton, Chromex/Bruker, Oriel/Newport, Photon Design, Dongwoo, Bentham, Solar

Product Drawings

Dimensions in mm [inches]

48.1 [1.80]

4.0 [0.16]

Focal plane of Detector

10.0 [0.69] ±0.4 [0.16]

155 [6.10]

■= position of pixel 1,1

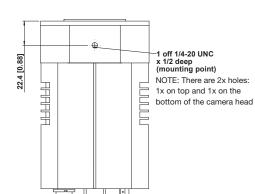
Weight: 2 kg [4 lb 8 oz]

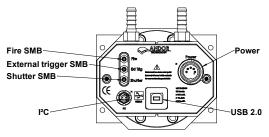
Connecting to the InGaAs

Camera Control

Connector type: USB 2.0

TTL / Logic


Connector type: SMB, provided with SMB - BNC cable 1 = Fire (Output), 2 = External Trigger (Input), 3 = Shutter (Output)


I²C connector

Compatible with Fischer SC102A054-130

1 = Shutter (TTL), 2 = I^2C Clock, 3 = I^2C Data, 4 = +5 Vdc, 5 = Ground

Minimum cable clearance required at rear of camera 90 mm

DU490-2.2

Rear connector panel

DU491-2.2

DU492-2.2

Applications Guide

Applications datac					
NIR Absorption-Transmission-Reflection Spectroscopy	1	\checkmark	✓		
NIR Photoluminescence		\checkmark	✓		

= Suitable

= Optimum

Order Today

Need more information? At Andor we are committed to finding the correct solution for you. With a dedicated team of technical advisors, we are able to offer you one-to-one guidance and technical support on all Andor products. For a full listing of our local sales offices, please see:

andor.com/contact

Our regional headquarters are:

Europe

Belfast, Northern Ireland Phone +44 (28) 9023 7126 Fax +44 (28) 9031 0792

North America

Connecticut, USA Phone +1 (860) 290 9211 Fax +1 (860) 290 9566

Japan

Tokyo Phone +81 (3) 3518 6488 Fax +81 (3) 3518 6489

China

Beijing

Phone +86 (10) 5129 4977 Fax +86 (10) 6445 5401

Items shipped with your camera:

1x 2m BNC - SMB conection cable 1x 3m USB 2.0 cable Type A to Type B 1x Set of Allen keys (7/64" & 3/32")

1x Power supply (PS-25) with mains cable

1x Quick launch guide

1x CD containing Andor user guides

1x Individual system performance booklet

1x CD containing either Solis software or SDK (if ordered)

Footnotes: Specifications are subject to change without notice

- Typically obtainable at ambient temperature of 20°C, coolant chillers operating with 10°C coolant @ 0.75 l/min.
- 2. Assembled in a state-of-the-art facility, Andor's UltraVac™ vacuum process combines a permanent hermetic vacuum seal (no o-rings), with a stringent protocol and proprietary materials to minimize outgassing. Outgassing is the release of trapped gases that would otherwise degrade cooling performance and potentially cause sensor failure.
- 3. Figures are typical unless otherwise stated.
- 4. The InGaAs sensor starts to 'open' to light up to approximately 1 μs before the rising edge of the Fire pulse. It then starts to 'close' to light up to 1 μs before the falling edge of Fire. This ensures that the camera is 100% responsive by the time the Fire pulse has risen and closed by the falling edge. These figures only need to be taken into account for extremely short exposures.
- 5. The standard PS-25 power supply is suitable for air cooling and deep cooling. Measured at ambient temperature of 20°C.
- 6. Measured using 16°C water and 16°C target/scene.
- 7. At exposures below 20 μ s, well depth will be reduced by approximately 1/3 of typical value stated.
- 8. Noise is measured on a single pixel.
- 9. Blemishes as stated by sensor manufacturer.
- The coolant temperature is also representative of the scene temperature that the camera is exposed to during these measurements.
- 11. Quantum efficiency of the sensor at 20 $^{\circ}\text{C}$ as supplied by the sensor manufacturer.

Minimum Computer Requirements:

- 3.0 GHz single core or 2.4 GHz multi core processor
- 2 GB RAM
- 100 MB free hard disc to install software (at least 1 GB recommended for data spooling)
- USB 2.0 High Speed Host Controller capable of sustained rate of 40 MB/s
- Windows (XP, Vista, 7 and 8) or Linux

Operating & Storage Conditions

- Operating (air cooling): 0°C to 20°C ambient
- Operating (deep cooling): 0°C to 30°C ambient
- Relative Humidity: < 70% (non-condensing)
- \bullet Storage Temperature: -25°C to 50°C

Power Requirements

• 110 - 240 VAC, 50 - 60 Hz

Windows is a registered trademark of Microsoft Corporation. Labview is a registered trademark of National Instruments. Matlab is a registered trademark of The MathWorks Inc.

SInGaAs22SS 0813 R1